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Abstract:

The vertebrate retina consists of a series of sheets of neurons, each containing a patterned
representation, or "neural image” corrresponding to the incoming visual scene. Most of the operations
can be described as convolutions implementing small kernels involving local neighborhoods. These
patterns become more complex as the visual signal passes through the retina as each new convolution
builds upon previous ones. Because we have access only to single cells, these patterns of activity have
never been recorded. As a first step in visualizing these patterns we have attempted to simulate them
using modemn image processors operating in real time, that, like the retina invoke local convolutions,
in an effort to understand the mechanisms, and the physiological roles of each of these biological
image processing operations. In addition, we have now developed methods for measuring these
patterns in living retinas. The comparison between the modeled and measured patterns will show us
what components of retinal function have not yet been incorporated into our understanding, as
expressed by the models. These studies will help us to understand biological image processing by
forcing us to assemble the retina using well-defined physiological functional building blocks, derived
from retinal function, A long-term objective of this research is the implementation of biological image
processing algorithms for man-made systems such as tracking, target identification, guidance and

navigation.
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Final Technical Report

AFOSR 91 - 0196
P.I.: Frank Werblin

Computer models of retinal function
» Objectives:

The vertebrate retina processes information by passing the visual signal through a series of
2-dimensional sheets of neurons (1) asillustrated in the caricature shown in Figure 1, At each retinal
level these neuronal arrays express a pattern of activity the “neural image,” that reflects the image

processing operations that have been
performed. Most of the operations can be
described as convolutions implementing

small  kernels  involvin local
mooniceors G E 44 &4 f §488  mesoucron neighborhoods. These pattemgs become
HORZONTAL CRlLLS BLURRING more complex as the visual signal passes
BAOLAR CELLS OIFFERENCE through the retina as each new convolution
AMACRINE CEULS soaocast, iwncbuilds upon previous ones. We have

attempted to reproduce these patterns of
activity using modem image processors
operating in real time, thatalso invokelocal
convolutions, in an effort to understand the
mechanisms, and the physiological roles of
Figure 1. Schematic of vertebrate reting showing the S maintach of these biological image processing
layers of cells identified by their names (left) and their functionsoperations. These studies will help us to
(righi). Convolutions at each layer perform imageunderstand biological image processing by
rrmformaﬂonsthalalterthe Pan‘mof ﬂ"m”yfhaf existsat CaChforcinz us %o assemble the reu'na using
retinal level. well-defined physiological functional

building blocks, derived from retinal
function. A long-term objective of this research is the implementation of biological image
processing algorithms for man-made systems such as tracking, target identification, guidance and

navigation.
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» Methods:

The neural images generated by the biological retina are dynamic 2-dimensional patterns
formed via convolutions based upon small (neighborhood) kemels. These kemels dictate in what
ways the activity ateach pixel is a function of the activity of adjacent pixels in its local neighborhood.
These operations are best and most easily simulated through the use of currently-available image
processing computational systems. We have utilized two different systems for studying retinal
processing, Our first computational system was the PIPE (Pipelined Image Processing Engine).
This was a digital machine operating in real time that performed local convolutions. More recently
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we have utilized the CNN paradigm (4,83), a somewhat more versatile system oprating on similar
principles, but with the capability of being implemented in analog VLSI. We adapted the space
and time constants derived from physiological single cell measurements taken from the retina of
the salamander to form the appropriate convolution kemels, synaptic functions, and interactions
mediating retinal function. Both of these systems have generated patterns of activity that simulate
the image processing functionsof the biological retina at each level of operation.

. Concurrently with the development of the computational retinal models, we have been
implementing methods for actually measuring the patterns of activity generated by the biological
retinas. The objective here is to compare the patterns generated by the biological retinas with those
formed on the image processors. Essentially, we are comparing the measurements with our
hypotheses of retinal function. To the extent that the model and hypothesis match, we can be
reasonably satisfied that our hypothesis, to the level that it reflects retinal function, is accurate. More
interestingly, when there is a mismatch between measurement and hypothesis, we will beled to a
new area of retinal functional that had previously been obscure.

So far in this work, our descriptions of outer retinal function seem adquat e because we have
matched the measurements taken from the physiological retina with the patterns generated in the
model. We are presently working on the measurement of inner retinal function as reflected in the
behavior of the output cells, the ganglion cells. It is in this region of retinal function, mediating
movement detetion and directional selectivity, where little is known about retinal circuitry or
function, that we expect to find disparities between hypothesis and measurement.

* Results during the grant period

Our research has focused wupon
implementing as much of the image
processing capability of the retina as
possible in the model system. The results
of this work is embodied in Paper #1

L e included in Appendix I (7), as well asina
& === =« videotape that has been widely distributed
to the academic community throughout
the world. A copy of this tape has already
been sent to John Tangney at AFOSR, and
a copy is available upon request.

The parameters we used to

3 implement the overall model were taken
B e ™™ from the physiological studies of the
Figure 14 salamander, perhaps the best-studied

Figure 2. Space constants for retinal networks derived from theyertebrate retina we have today. To
physiological data. These space canstants are implemented asif|ystrate, Fi gure 2 shows a summary of the
diffuston templates at each level space constants incorporated into the

model.
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Nonlinear Synaptic Functions
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Figure 3. Synaplic functions defining the relationship of activity in each retinal cell as a function of the activity of
the cells that drive it. As a general rule, cells in the outer retina were driven by continuous functions over a broad
range of potentials, whereas cells in the inner retina were driven by much steeper functions that are almost

“threshold” functions.

Timing of retinal signals was also adapted from the physiological measurements, and the
data used to implement this timing is discussed in Paper 1. Finally, the synaptic functions, derived
from the measured input-output relations between retinal cells, was implemented from lookup tables
in the model. A series of these synaptic functions is illustrated in Figure 3.

These three functional relationships defining time, space and relative magnitude of signals,
were combined according to the rules of retinal connectivity as well as we know them today (5), to
generate the model of retinal function described in Paper I and illustrated in time and space on the
videotape. Some of the highlights of these studies are illustrated below.
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Figure 4. Transformations at the outer retina. The original intensity levels are compressed by adaptation
mechanisms in each photoreceptor to generate a series of compressed response levels. These levels are normalized
with respect to local average intensities by the action of the horizontal cell network. These locally normalized signals
are then amplified at the synapse between photoreceprors and bipolar cells to emphasize the slope of the signal at
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* Outer Retinal Function

Th? first ngajor interaction in the retina takes place at the photoreceptor terminals where the
broad ranging horizontal cells feed back to the photoreceptors to form a contrast-enhanced version

Figure 5. Patierns of activily at the bipolar cells. A. Activity measured in a bipolar cell “array” showing the
presence of some inhibition around the edges of the square. B. Patterns generated in the model using lateral
inhibition from harizontal cells. C. Difference between the measured and modeled patterns at the bipolar cell
array. These differences, mainly spike-like projections at the corners of the responses to a square, represent
activity that was not accounted for in the model.

of the original image at the photoreceptor terminals (2,6) as shown in Figure 4. The signals
generated across the array of bipolar cells in response to a square patch of illumination areillustrated
in Figure 5. This shows the bipolar cell response to the square embedded in a saucer of horizontal
cell inhibition. A snapshot of the form of bipolar cell pattems derived from both the hypothetical
and actual physiologically-measured results are shown, along with a pattem showing the differences
between these two forms of activity at one instant of time. It is through an analysis of these
differences that we will be able to learn about retinal function, because the differences are due to
components of function that we have not included in the model. For example, in the comparison of
Figure S, there is a set of peaks in the activity of the model that don’t exist in the measurements.
This indicates that either the space constants for the horizontal cell or bipolar dendrites was in error
in our model and should be adjusted based upon a more accurate set of physiological measurments.
These results also show that interactions at the outer retina perform more of a gain-setting than an
edge enhancing function. It would require a much narrower space constant for the horizontal cells

to mediate an edge-enhancing function (3).
* Activity at the Inner Plexiform Layer

The inner retina mediates functions associated with timing such as movement detection,
change detection, and dynamic contrast gain control. These functions are subserved by two main
populations of amacrine cells as shown in Figure 6. One population, generating a sustained response,
appears to transmit inhibition over a region about the same dimension over which it receives its
input, as shown in Figure 6A. The other population receives input locally, then broadcasts its output
over 8 broad area, but only transiently, as shown in figure 6B. These cells have processes that can
extend 1/3 of the way across the retina, and their inhibitory activity dominates the activity of all
cells that send signals from the retina to higher centers. The retinal output cells, the ganglion cells,
are therefore controlled by these inhibitory signals, and their effects are superimposed upon the
activity of the bipolar cells shown in Figure 5, as illustrated in the behaviors of the ganglion cell
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Figure 6. A. Narrow field amacrine cell, probably responsible for local rather ihan lateral inhibition. Its main role
may be lo truncate activity In local regions creating transient activity in cells that signal anly the arrival or departure
of visual targets, B. Wide fleld amacrine cells. Their function is to receive inputs locally (in) and then to broadcast
activity over wide regions of the retina (out). These cells may be involved in directional selective movement detection

mosaic shown in Figure 7. This figure shows the development in time of the ganglion cell response.
It begins with a square area of activity corresponding to the excitatory input from the bipolar cells
in A. This is followed by & trough of inhibition that begins to develop in B, and proceeds to spread
across the retina in C and D. As this trough represents the activity of the amacrine cell system
described in B of the previous figure. At the same time, a ridge of activity develops around the
original square area of activity. This ridge is mediated by the local inhibition of the narrow field
amacrine cells shown in part A of Figure 6. These two inhibitory components, represented by the
ridge and trough, are the simplest manifestations of the amacrine cell inhibition.

Fligure 7. Development in time of the ganglion cell resporse. A. Initial response showing the excitatory input from

alocal population of bipolar cells driven by the square stimulus. B,C.D. Development, in time of a broad inhibitory
trough mediated by the wide field amacrine cells, as well as a narrower ridge of inhibition near the square itself
mediated by the narrow field amacrine cell system.

« What we've learned from these studies.

The modeling exercise presented above and described more fully in Appendix I represents
a first step in understanding retinal function from a computational point of view. We now have an
assembly of functional modules embodied in the mode! descriptions of the different classes of retinal
cell networks. Most of the physiological responses can be approximated by these components, but
the actual arrangement, including lateral dimensions, time course, synaptic gains and weightings
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can only be determined by comparing the model behavior with that of the living retina, To measure
the patterns of activity in the actual retina we have constructed a multielectrode recording apparatus
that is capable of measuring the coincident activity of 100 ganglion cells. This will provide us with
information about correlative activity and asymmetries in function. In addition, we have developed
methods for recording with patch clamp from individual ganglion cells, recordings that can last for
hours. By moving the stimulus, i.e. a square box, to every possible position with respect to the
ganglion cell, we can use that cell as a representative of all ganglion cells in a grid that would have
responded to the stimulus. These recordings, displaying both excitation and inhibition, can then be
played back in sequence to provide a pattern of activity which we can compare with the model.
These studies will give us a clearer indication of the dimensions and time course of the retinal
networks underlying different forms of lateral inhibition, networks that have never been studied
before. Thus, the model provides us with a prototype of retinal function as we know it today, which
may be useful for generating biologically-based image processing system. But the modeling also
leads us to new advances in our understanding of the biology by providing valuable analytical tools
that have never before been available to biologists.
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